石墨烯与硅的异质功能集成,有助于突破传统硅基光电器件的能效瓶颈,大面积石墨烯可以与硅CMOS技术大规模后端集成,是后摩尔时代微电子与光电子领域融合发展的前沿方向之一,具有重要研究意义。本报告将从硅基石墨烯异质器件的工作机理和规模集成方面介绍本团队近期的研究进展[1-11],并展望这一领域的未来发展趋势与挑战。针对传统硅光电传感器的能效瓶颈问题,从底层机理上进行分析,揭示场耦合电荷器件的工作机理,探索硅基石墨烯异质光电传感器用于宽光谱探测和神经拟态器件的应用潜力。在规模集成方面,研究从单个原理器件到线阵、面阵再到系统与硅兼容的多种工艺,探讨硅基石墨烯光电探测与图像传感器在工艺兼容性、面阵集成等方面优势与挑战。
参考文献:[1]
Graphene charge-injection photodetectors, Nature Electronics 5, 281 (2022).
[2]
Graphene for Post-Moore Silicon Optoelectronics,Wiley Book (2022). ISBN 9783527351817
[3]
Macroscopic-Assembled-Graphene Nanofilms/Germanium Broadband Photodetectors, IEDM 9.2 (2021).
[4]
2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges, Chemical Reviews,622, 6512 (2022).
[5]
Macroscopic assembled graphene nanofilms based room temperature ultrafast mid‐infrared photodetectors, InfoMat, e12039 (2022).
[6]
Broadband Graphene Field-Effect Coupled Detectors: from Soft X-ray to Near-Infrared, IEEE Electron Device Letters 43, 902 (2022).
[7]
Graphene Nanofilms/Silicon Near-Infrared Avalanche Photodetectors, IEEE Transactions on Nanotechnology 21, 307 (2022).
[8]
Graphene-Silicon Diode for 2D Heterostructure Electrical Failure Protection; IEEE Journal of the Electron Devices Society, Accepted (2022). DOI: 10.1109/JEDS.2022.3214662
[9]
Single-Transistor Neuron with Excitatory-Inhibitory Spatiotemporal Dynamics Applied for Neuronal Oscillations, Advanced Materials, Accepted (2022). https://doi.org/10.1002/adma.20220737
[10]
Highly Sensitive MoS2 Photodetector Based on Charge Integration and Field-coupled Effect, IEEE Transactions on Electron Devices, Accepted (2022).
[11] Neuromorphic Device Based on Silicon Nanosheets, Nature Communications, 13, 5216 (2022).