凯发

Speaker-Stephan Roche

Stephan Roche
Theoretical and Computational Nanoscience Group of ICN2, Spain
Stephan Roche is an ICREA Research Professor, head of the Theoretical and Computational Nanoscience Group of Catalan Institute of Nanoscience and Nanotechnology (ICN2). He is co-supervising the GRAPHENE SPINTRONICS Workpackage within the Graphene Flagship project.

He is a theoretical physicist expert in quantum transport and in the development of computational modelling of nanomaterials and devices. His expertise includes the development of order N quantum transport (Kubo and Landauer-Büttiker conductances), with which he has pioneered mesoscopic transport studies in chemically disordered graphene-based materials and devices. He has a deep experience in developing advanced simulation tools in the context of industrial research, with collaborations including large companies such as NEC, STMicroelectronics, and SAMSUNG.
Title:Understanding Charge Transport in Graphene-based Materials: From Concepts to Applications
SymposiumFundamental of Graphene, other 2D materials and Related Devices
Starting Time
Ending Time
Abstract

I will present a successful computational strategy to investigate quantum (charge, phonon and spin) transport in structurally or/and chemically complex materials such as graphene, topological insulators, or organic matter, for which it is necessary to go beyond phenomenological approaches. The possibility to combine first principles calculations with tight-binding models, together with the development of order N algorithms which are free from any matrix inversion/diagonalization give access to the study of quantum transport phenomena in realistic models of complex materials containing up to 1 Billion atoms. Such methodologies allow direct comparison with experiments, and can hence serve as guiding tools for technology optimization, as well as new tools for discovering quantum phenomena out of reach from conventional perturbative treatments and semi-classical transport approaches.

One illustration will be the quantitative analysis on the transport properties of the damage produced during the wafer-scale production of graphene through chemical growth (CVD), or the mechanical/chemical exfoliation and chemical transfer to versatile substrates, followed by the device fabrication. Fundamental properties of charge transport in polycrystalline graphene, accounting the variability in average grain sizes and grain boundaries imperfections as observed in real samples grown by CVD will be presented, together with their relevance for device optimization and diversification of technological functionalities. Other illustrations will include thermal transport in hybrid boron nitride (BN)/graphene materials, or BN/graphene heterostructures which display fascinating physics such as the Hofstadter butterfly.

A second type of applications will focused on the study spin-orbit interaction induced by dilute ad-atom (gold, thallium) deposits on graphene.  Unique phenomenon of the spin-dynamics in graphene (such as Spin Quantum Hall effect), as well as quantitative evaluation of spin precession times and spin-relaxation times as a function of charge density will be reported. Such findings will be shown to open novel perspectives for spin manipulation, contributing to the future advent of non-charge based revolutionary information processing and computing.

Reference:
[1] L. E. F. Foa Torres, S. Roche, and J. C. Charlier, Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport (Cambridge University Press, Cambridge, 2014). 
[2] S. Roche, N. Leconte, F. Ortmann, A. Lherbier, D. Soriano, and J.-C. Charlier, Solid State Communications 152, 1404 (2012).
[3] D. Van Tuan, J. Kotakoski, T. Louvet, F. Ortmann, J. C. Meyer, and S. Roche, Nano Lett. 13, 1730−1735 (2013)
[4] A.W. Cummings, D. Loc Duong, V. Luan Nguyen, D. Van Tuan, J. Kotakoski , J.E. Barrios Vargas, Y. Hee Lee, S. Roche; Advanced Materials 2014 DOI: 10.1002/adma.20140138

Main Organizer

CGIA supports members to focus on application and industry chain, to keep pace with market development, to guarantee industry interests by involving in policy making and establishing standards, and to build long-term cooperation with up-down stream enterprises all over the world.

Contact
+86-18657108128
+86-10-62771936

E-mail: meeting@c-gia.org

Abstract: Minyang Lu

Sponsor: Wenyang Yang

Media: Liping Wang

Follow us on WeChat
Copyright © GRAPCHINA 京ICP备10026874号-24     京公网安备 11010802030754号
share to:

Operated by:China Innovation Alliance of the Graphene Industry